
How to Finance Your Energy Program

Selecting a Cost/Benefit Analysis Method Cost/benefit analysis can determine if and when an improvement will pay for itself through energy savings and to help you set priorities among alternative improvement projects. Cost/benefit analysis may be either a simple payback analysis or the more sophisticated life cycle cost analysis. Since most electric utility rate schedules are based on both consumption and peak demand, your analyst should be skilled at assessing the effects of changes in both electricity use and demand on total cost savings, regardless of which type of analysis is used. Before beginning any cost/benefit analyses, you must first determine acceptable design alternatives that meet the heating, cooling, lighting, and control requirements of the building being evaluated. The criteria for determining whether a design alternative is "acceptable" includes reliability, safety, conformance with building codes, occupant comfort, noise levels, and space limitations. Since there will usually be a number of acceptable alternatives for any project, cost/benefit analysis allows you to select those that have the best savings potential.

Simple Payback Analysis

A highly simplified form of cost/benefit analysis is called simple payback. In this method, the total first cost of the improvement is divided by the first-year energy cost savings produced by the improvement. This method yields the number of years required for the improvement to pay for itself.

This kind of analysis assumes that the service life of the energy-efficiency measure will equal or exceed the simple payback time. Simple payback analysis provides a relatively easy way to examine the overall costs and savings potentials for a variety of project alternatives. However, it does

not consider a number of factors that are difficult to predict, yet can have a significant impact on cost savings. These factors may be considered by performing a life-cycle cost (LCC) analysis.

Simple Payback

As an example of simple payback, consider the lighting retrofit of a 10,000-square-foot commercial office building. Relamping with T-8 lamps and electronic, high-efficiency ballasts may cost around \$13,300 (\$50 each for 266 fixtures) and produce annual savings of around \$4,800 per year (80,000 kWh at \$0.06/kWh). This simple payback for this improvement would be

> \$13,300 = 2.8 years \$4,800/year

That is, the improvement would pay for itself in 2.8 years, a 36% simple return on the investment (1/2.8 = 0.36).

Life-Cycle Cost Analysis Life-cycle cost analysis (LCC) considers the total cost of a system, device, building, or other capital equipment or facility over its anticipated useful life. LCC analysis allows a comprehensive assessment of all anticipated costs associated with a design alternative. Factors commonly considered in LCC analyses include initial capital cost, operating costs, maintenance costs, financing costs, the expected useful life of equipment, and its future salvage values. The result of the LCC analysis is generally expressed as the value of initial and future costs in today's dollars, as reflected by an appropriate discount rate.

The first step in this type of analysis is to establish the general study parameters for the

project, including the base date (the date to which all future costs are discounted), the service date (the date when the new system will be put into service), the study period (the life of the project or the number of years over which the investor has a financial interest in the project), and the discount rate. When two or more design alternatives are compared (or even when a single alternative is compared with an existing design), these variables must be the same for each to assure that the comparison is valid. It is meaningless to compare the LCC of two or more alternatives if they are computed using different study periods or different discount rates.

Decision makers in both the public and private sectors have long used LCC analysis to obtain an objective assessment of the total cost of owning, operating, and maintaining a building or building system improvement over its useful life. Nevertheless, an LCC analysis does require a good understanding of acceptable alternatives, useful life, equipment efficiencies, and discount rates.

Selecting the "Best" Alternatives
Generally, all project alternatives should be
screened using simple payback analyses. A more
detailed and costly LCC analysis should be
reserved for large projects or those
improvements that entail a large investment,
since a detailed cost analysis would then be a
small part of the overall cost. Both simple

small part of the overall cost. Both simple payback and LCC analyses will allow you to set priorities based on measures that represent the greatest return on investment. In addition, these analyses can help you select appropriate financing options:

- Energy-efficiency measures with short payback periods, such as one to two years, are economically very attractive and should be implemented using operating reserves or other readily available internal funds, if possible.
- Energy-efficiency measures with payback periods from three to five years may be considered for funding from available internal capital investment monies, or may be attractive candidates for third-party financing through energy service companies or equipment leasing arrangements.
- Frequently, short payback measures can be combined with longer payback measures (10

years or more) in order to increase the number of measures that can be cost-effectively included in a project. Projects that combine short- and long-term paybacks are recommended to avoid "cream-skimming" (implementing only those measures that are highly cost effective and have quick paybacks) at the expense of other worthwhile measures. A selected set of measures with a combination of payback periods can be financed either from available internal funds or through third party alternatives.

If simple payback time is long, 10 or more years, economic factors can be very significant and LCC analysis is recommended. In contrast, if simple payback occurs within three to five years, more detailed LCC analysis may not be necessary, particularly if price and inflation changes are assumed to be moderate.

Weighing Non-Cost Impacts

Some factors related to building heating, air conditioning, and lighting system design are not considered in either simple payback or LCC analyses. Examples include the thermal comfort of occupants in a building and the adequacy of task lighting, both of which affect productivity. A small loss in productivity due to reduced comfort or poor lighting can quickly offset any energy cost savings.

Conventional cost/benefit analyses also normally do not consider the ancillary societal benefits that can result from reduced energy use (e.g., reduced carbon emissions, improved indoor air quality). In some cases, these ancillary benefits can be assigned an agreed upon monetary value, but the values to be used are strongly dependent on local factors. In general, if societal benefits have been assigned appropriate monetary values by a local utility, they can be easily considered in your savings calculations. However, your team should discuss this issue with your local utility or with consultants working on such values in your area.

Finally, in any cost analysis, it can be very important to include avoided cost as part of the benefit of the retrofit. When upgrading or replacing building equipment, the avoided cost of maintaining existing equipment should be considered a cost savings provided by the improvement.

Financing Mechanisms

Capital for energy-efficiency improvements is available from a variety of public and private sources, and can be accessed through a wide and flexible range of financing instruments. While variations may occur, there are five general financing mechanisms available today for investing in energy-efficiency:

- Internal Funds. Energy-efficiency improvements are financed by direct allocations from an organization's own internal capital or operating budget.
- **Debt Financing.** Energy-efficiency improvements are financed with capital borrowed directly by an organization from private lenders.
- Lease or Lease-Purchase Agreements. Energyefficient equipment is acquired through an operating or financing lease with no up-front costs, and payments are made over five to ten years.
- Energy Performance Contracts. Energyefficiency measures are financed, installed, and maintained by a third party, which guarantees savings and payments based on those savings.
- Utility Incentives. Rebates, grants, or other financial assistance are offered by an energy utility for the design and purchase of certain energy-efficient systems and equipment.

These financing mechanisms are not mutually exclusive (i.e., an organization may use several of them in various combinations). The most appropriate set of options will depend on the size and complexity of a project, internal capital constraints, in-house expertise, and other factors. Each of these mechanisms is discussed briefly below, followed by some additional funding sources and considerations.

Internal Funds

The most direct way for the owner of a building or facility to pay for energy-efficiency improvements is to allocate funds from the internal capital or operating budget. Financing internally has two clear advantages over the other options discussed below -- it retains internally all savings from increased energy-efficiency, and it is usually the simplest option administratively. The resulting savings may be used to decrease overall operating

expenses in future years or retained within a revolving fund used to support additional efficiency investments. Many public and private organizations regularly finance some or all of their energyefficiency improvements from internal funds.

In some instances, competition from alternative capital investment projects and the requirement for relatively high rates of return may limit the use of internal funds for major, standalone investments in energy-efficiency. In most organizations, for example, the highest priorities for internal funds are business or service expansion, critical health and safety needs, or productivity enhancements. In both the public and private sectors, capital that remains available after these priorities have been met will usually be invested in those areas that offer the highest rates of return. The criteria for such investments commonly include an annual return of 20 percent to 30 percent or a simple payback of three years or less.

Since comprehensive energy-efficiency improvements commonly have simple paybacks of five to six years, or about a 12 percent annual rate of return, internal funds often cannot serve as the sole source of financing for such improvements. Alternatively, however, internal funding can be used well and profitably to achieve more competitive rates of return when combined with one or more of the other options discussed below.

Debt Financing

Direct borrowing of capital from private lenders can be an attractive alternative to using internal funds for energy-efficiency investments. Financing costs can be repaid by the savings that accrue from increased energy-efficiency. Additionally, municipal governments can often issue bonds or other long-term debt instruments at substantially lower interest rates than can private corporate entities. As in the case of internal funding, all savings from efficiency improvements (less only the cost of financing) are retained internally.

Debt financing is administratively more complex than internal funding, and financing costs will vary according to the credit rating of the borrower. This approach may also be restricted by formal debt ceilings imposed by municipal

policy, accounting standards, and/or Federal or state legislation.

In general, debt financing should be considered for larger retrofit projects that involve multiple buildings or facilities. When considering debt financing, organizations should weigh the cost and complexity of this type of financing against the size and risk of the proposed projects.

Lease and Lease-Purchase Agreements

Leasing and lease-purchase agreements provide a means to reduce or avoid the high, up-front capital costs of new, energy-efficient equipment. These agreements may be offered by commercial leasing corporations, management and financing companies, banks, investment brokers, or equipment manufacturers. As with direct borrowing, the lease should be designed so that the energy savings are sufficient to pay for the financing charges. While the time period of a lease can vary significantly, leases in which the lessee assumes ownership of the equipment generally range from five to ten years. There are several different types of leasing agreements, as shown in the sidebar. Specific lease agreements will vary according to lessor policies, the complexity of the project, whether or not engineering and design services are included, and other factors.

Energy Performance Contracts

Energy performance contracts are generally financing or operating leases provided by an Energy Service Company (ESCo) or equipment manufacturer. The distinguishing features of these contracts are that they provide a guarantee on energy savings from the installed retrofit measures, and they provide payments to the ESCo from the savings, freeing the customer from any need of up-front payments to the ESCo. The contract period can range from five to 15 years, and the customer is required to have a certain minimum level of capital investment (generally \$200,000 or more) before a contract will be considered.

Under an energy performance contract, the ESCo provides a service package that typically includes the design and engineering, financing, installation, and maintenance of retrofit measures to improve energy-efficiency. The scope of these improvements can range from measures that affect a single part of a building's energy-using

Types of Leasing Agreements

Operating Leases are usually for a short term, occasionally for periods of less than one year. At the end of the lease period, the lessee may either renegotiate the lease, buy the equipment for its fair market value, or acquire other equipment. The lessor is considered the owner of the leased equipment and can claim tax benefits for its depreciation.

Financing Leases are agreements in which the lessee essentially pays for the equipment in monthly installments. Although payments are generally higher than for an operating lease, the lessee may purchase the equipment at the end of the lease for a nominal amount (commonly \$1). The lessee is considered the owner of the equipment and may claim certain tax benefits for its depreciation.

Municipal Leases are available only to taxexempt entities such as school districts or municipalities. Under this type of lease, the lessor does not have to pay taxes on the interest portion of the lessee's payments, and can therefore offer an interest rate that is lower than the rate for usual financing leases. Because of restrictions against multi-year liabilities, the municipality specifies in the contract that the lease will be renewed year by year. This places a higher risk on the lessor, who must be prepared for the possibility that funding for the lease may not be appropriated. The lessor may therefore charge an interest rate that is as much as 2 percent above the tax-exempt bond rate, but still lower than rates for regular financing leases. Municipal leases nonetheless are generally faster and more flexible financing tools than taxexempt bonds.

Guaranteed Savings Leases are the same as financing or operating leases but with the addition of a guaranteed savings clause. Under this type of lease, the lessee is guaranteed that the annual payments for leasing the energy-efficiency improvements will not exceed the energy savings generated by them. The owner pays the contractor a fixed payment per month. If actual energy savings are less than the fixed payment, however, the owner pays only the small amount saved and receives a credit for the difference.

infrastructure (such as lighting) to a complete package of measures for multiple buildings and facilities. Generally, the service provider will guarantee savings as a result of improvements in both energy and maintenance efficiencies. Flatfee payments tend to be structured to maintain a positive cash flow to the customer with whom the agreement is made. With the increasing deregulation of conventional energy utilities, several larger utilities have formed unregulated subsidiaries that offer a full range of energy-efficiency services under performance agreements.

An energy performance contract must define the methodology for establishing the baseline costs and cost savings and for the distribution of those savings among the parties. The contract must also specify how those savings will be determined, and must address contingencies such as utility rate changes and variations in the use and occupancy of a building. While several excellent guidance documents exist for selecting and negotiating energy performance contracts, large or complicated contracts should be negotiated with the assistance of experienced legal counsel.

Utility Incentives

Some utilities still offer financial incentives for the installation of energy-efficient systems and equipment, although the number and extent of such programs appears to be decreasing as utility deregulation proceeds. These incentives are available for a variety of energy-efficient products including lighting, HVAC systems, energy management controls, and others. The most common incentives are equipment rebates, design assistance, and low-interest loans.

In general, the primary purpose of utility incentives is to lower peak demand; overall energy-efficiency is an important, but secondary consideration. Incentives are much more commonly offered by electric utilities than by natural gas utilities.

Additional Financing Sources and Considerations

State and Federal Assistance. Matching grants, loans, or other forms of financial assistance (in

addition to those listed above) may be available from the Federal government or state governments. If your community is considering energy-efficiency improvements for public or assisted multifamily housing, your program could be eligible to receive assistance through various programs of the U.S. Department of Housing and Urban Development. A variety of stateadministered programs for building efficiency improvements may also be available, some of which are funded through Federal block grants and programs. Federal assistance available through states include Federal block grants and State Energy Conservation Program funds. An example of individual state programs is the Texas LoanSTAR program, which provides low-interest loans for state agencies and schools.

Utility Assistance

Equipment Rebates. Some utilities offer rebates on the initial purchase price of selected energy-efficient equipment. The amount of the rebate varies substantially depending on the type of equipment. For example, a rebate of \$.50 to \$1 may be offered for the replacement of an incandescent bulb with a more efficient fluorescent lamp, while the installation of an adjustable speed drive may qualify for a rebate of \$10,000 or more.

Design Assistance. A smaller number of utilities provide direct grants or financial assistance to architects and engineers for incorporating energy-efficiency improvements in their designs. This subsidy can be based on the square footage of a building, and/or the type of energy-efficiency measures being considered. Generally, a partial payment is made when the design process is begun, with the balance paid once the design has been completed and installation has commenced.

Low-Interest Loans. Loans with below-market rates are provided by other utilities for the purchase of energy-efficient equipment and systems. Typically, these low-interest loans will have an upper limit in the \$10,000 to \$20,000 range, with monthly payments scheduled over a two- to five-year period.

Bulk Purchasing. Large organizations generally have purchasing or materials procurement departments that often buy standard materials in bulk or receive purchasing discounts because of the volume of their purchases. Such organizations can help reduce the costs of energy-efficiency renovations if their bulk purchasing capabilities can be used to obtain discounts on the price of materials (e.g., lamps and ballasts). While some locales may have restrictions that limit the use of this option, some type of bulk purchasing can usually be negotiated to satisfy all parties involved.

Project Transaction Costs. Certain fixed costs are associated with analyzing and installing energy measures in each building included in a retrofit program. Each additional building, for example, could represent additional negotiations and transactions with building owners, building analysts, energy auditors, equipment installers, commissioning agents, and other contractors. Similarly, each additional building will add to the effort involved in initial data analysis as well as in tracking energy performance after the retrofit. For these reasons, it is often possible to achieve target energy savings at lower cost by focusing only on those buildings that are the largest energy users. One disadvantage with larger buildings is that the energy systems in the building can be more difficult to understand, but overall, focusing on the largest energy users is often the most efficient use of your financial resources.

Direct Value-Added Benefits. The primary value of retrofits to buildings and facilities lies in the reduction of operating costs through improved energy-efficiency and maintenance savings. Nevertheless, the retrofit may also directly help address a variety of related concerns, and these benefits (and avoided costs) should be considered in assessing the true value of an investment. A few examples of these benefits include the improvement of indoor air quality in office buildings and schools; easier disposal of toxic or hazardous materials found in energyusing equipment; and assistance in meeting increasingly stringent state or Federal mandates for water conservation. Effective energy management controls for buildings can also

provide a strong electronic infrastructure for improving security systems and telecommunications.

Economic Development Benefits. In addition to direct savings on operating costs and the addedvalue benefits mentioned above, investments in energy-efficiency can also support a community's economic development and employment opportunities. Labor will typically constitute about 60 percent of a total energy investment, and about 50 percent of equipment can be expected to be purchased from local equipment suppliers; as a result, about 85 percent of the investment is retained within the local economy. Additionally, funds retained in urban areas will generally be respent in the local economy. The Department of Commerce estimates that each dollar retained in an urban area will be re-spent three times. This multiplier effect results in a three-fold increase in the economic benefits of funds invested in energy-efficiency, without even considering the savings from lower overall fuel costs.

For more information contact the Rebuild America Clearinghouse at 252-459-4664 or visit www.rebuild.gov

